p53 Ab-1 (Clone PAb 240)
Mouse Monoclonal Antibody
Cat. #MS-104-P0, -P1, or -P (0.1ml, 0.5ml, or 1.0ml at 200µg/ml) (Purified Ab with BSA and Azide)
Cat. #MS-104-P1ABX or -PABX (0.1ml or 0.2ml at 1.0mg/ml) (Purified Ab without BSA and Azide)
Cat. #MS-104-R7 (7.0ml) (Ready-to-Use for Immunohistochemical Staining)
Cat. #MS-104-PCS (5 Slides) (Positive Control for Histology)
Cat. #MS-104-PCL (0.1ml) (Positive Control for Western Blot)

Description: p53 is a tumor suppressor gene expressed in a wide variety of tissue types and is involved in regulating cell growth, replication, and apoptosis. It binds to mdm2, SV40 T antigen and human papilloma virus E6 protein p53 senses DNA damage and possibly facilitating repair. Mutation involving p53 is found in a wide variety of malignant tumors, including breast, ovarian, bladder, colon, lung, and melanoma.

Comments: Ab-1 reacts with only MUTANT p53 protein under NON-DENATURING conditions (immunoprecipitation) but reacts with both mutant and wild form of p53 under denaturing conditions (Western Blotting).

Mol. Wt. of Antigen: 53kDa
Epitope: aa 212-217
Species Reactivity: Human, Others not known.
Clone Designation: PAb 240
Ig Isotype: IgG1
Immunogen: Murine p53 protein corresponding to aa14-289.

Applications and Suggested Dilutions:
- Flow Cytometry
- Immunoprecipitation (Native and denatured) (Use Protein G) (Ab 2µg/mg protein lysate)
- Western Blotting (Ab 1-2µg/ml for 2hrs at RT)
- Immunohistology (Ab 2-4µg/ml for 30 min at RT) (methacarn- or formalin/paraffin) (Recommended only for murine tissues)
- [Staining of formalin-fixed tissues REQUIRES boiling tissue sections in 1mM EDTA, pH 8.0, (NEOMARKERS’ Cat. #AP-9004), for 10-20 min followed by cooling at RT for 20 min.]

The optimal dilution for a specific application should be determined by the investigator.

Positive Control:
MDA-231 or SKBR3 cells.
Colon carcinoma

Cellular Localization: Nuclear

Supplied As:
200µg/ml of antibody purified from ascites fluid by Protein G chromatography. Prepared in 10mM PBS, pH 7.4, with 0.2% BSA and 0.09% sodium azide.

Also available without BSA and azide at 1mg/ml

or

Prediluted antibody which is ready-to-use for staining of formalin-fixed, paraffin-embedded tissues.

Storage and Stability:
Ab with sodium azide is stable for 24 months when stored at 2-8°C. Antibody WITHOUT sodium azide is stable for 36 months when stored at below 0°C.

Key References:

Limitations and Warranty:
Our products are intended FOR RESEARCH USE ONLY and are not approved for clinical diagnosis, drug use or therapeutic procedures. No products are to be construed as a recommendation for use in violation of any patents. NeoMarkers makes no representations, warranties or assurances as to the accuracy or completeness of information provided on our data sheets and website. Our warranty is limited to the price paid for the product. NeoMarkers is not liable for any property damage, personal injury, time or effort or economic loss caused by our products.

Material Safety Data:
This product is not licensed or approved for administration to humans or to animals other than the experimental animals. Standard Laboratory Practices should be followed when handling this material. The chemical, physical, and toxicological properties...
of running water to avoid deposits forming in metal drainage pipes. Acid in acidic conditions and should be discarded in a large volume solder in the plumbing systems. Sodium azide forms hydrazoic due to the reaction of sodium azide with copper, lead, brass, or Health has issued a bulletin citing the potential explosion hazard indicated above. The National Institute of Occupational Safety and appropriate care should be taken when handling this material as preservative. Although the quantity of azide is very small, and ingestion. The material contains 0.09% sodium azide as a measures should be taken to avoid skin and eye contact, inhalation, of this material have not been thoroughly investigated. Appropriate Additional Key References:

1. Asamoto M; Mann AM; Macatee TL; Cohen SM. Mutations and expression of the p53 gene in rat bladder carcinomas and cell lines. Molecular Carcinogenesis, 1994, 9(4):236-44.


15. Allred DC; Clark GM; Ellledge R; Fuqua SA; Brown RW; Channess GC; Osborne CK; McGuire WL. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer [see comments]. Journal of the National Cancer Institute, 1993, 85(3):200-6.

16. Bhatia K; Goldschmids W; Gutierrez M; Gaidano G; Dalla-Favera R; Magrath I. Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect. Faseb Journal, 1993, 7:951-6.


p53 Ab-1 (Clone PAb 240)
Mouse Monoclonal Antibody
Cat. #MS-104-P0, -P1, or -P (0.1ml, 0.5ml, or 1.0ml at 200 µg/ml)
(Purified Ab with BSA and Azide)
Cat. #MS-104-P1ABX or -PABX (0.1ml or 0.2ml at 1.0mg/ml)
(Purified Ab without BSA and Azide)
Cat. #MS-104-R7 (7.0ml) (Ready-to-Use for Immunohistochemical Staining)
Cat. #MS-104-PCS (5 Slides) (Positive Control for Histology)
Cat. #MS-104-PCL (0.1ml) (Positive Control for Western Blot)

22. Fontanini G; Bigini D; Vignati S; Macchiarini P; Pepe S; Angeretti CA; Pingitore R; Squarining F. p53 expression in non small cell lung cancer: clinical and biological correlations. Anticancer Research, 1993, 13(3):737-42.
23. Gapany M; Pavelic ZP; Gapany SR; Pavelic I; Li YG; Craven JM; Jones H; Biddinger P; Stambrook PJ; Gluckman JL. Relationship between immunohistochemically detectable p53 protein and prognostic factors in head and neck tumors. Cancer Detection and Prevention, 1993, 17(3):379-86.
32. Reid RL; Lindholm PF; Mireskindari A; Dittmer J; Brady JN. Stabilization of wild-type p53 in human T-lymphocytes transformed by HTLV-I. Oncogene, 1993, 8(11):3029-36.
34. Schmieg FL; Simmons DT. p53 mutants with changes in conserved region B: three classes with differing antibody reactivity, SV40 T antigen binding and ability to inhibit transformation of rat cells. Oncogene, 1993, 8(8):2043-50.
36. Tominaga O; Hamelin R; Trouvat V; Salmon RJ; Lesec G; Thomas G; Remvikos Y. Frequently elevated content of immunohistochemically defined wild-type p53 protein in colorectal adenomas. Oncogene, 1993, 8(10):2635-8.
43. Bodner SM; Minna JD; Jensen SM; D’Amico D; Carbone D; Mitsuodini T; Fedorko J; Buchhagen DL; Nau MM; Gazdar AF; et al. Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene, 1992, 7(4):743-9.
44. Cunningham J; Lust JA; Schaid DJ; Bren GD; Carpenter HA; Rizza E; Kovach JS; Thibodeau SN. Expression of p53 and 17p allelic loss in colorectal carcinoma. Cancer Research, 1992, 52(7):1974-80.
p53 Ab-1 (Clone PAb 240)
Mouse Monoclonal Antibody
Cat. #MS-104-P0, -P1, or -P (0.1ml, 0.5ml, or 1.0ml at 200 µg/ml)
Cat. #MS-104-P1ABX or -PABX (0.1ml or 0.2ml at 1.0mg/ml)
Cat. #MS-104-PCL (0.1ml)
Cat. #MS-104-PCS (5 Slides)
Cat. #MS-104-PCL (0.1ml) (Positive Control for Histology)
Cat. #MS-104-PCL (0.1ml) (Positive Control for Western Blot)

46. Eccles DM; Brett I; Lessells A; Gruber L; Lane D; Steel CM; Leonard RC. Overexpression of the p53 protein and allelic loss at 17p13 in ovarian carcinoma. British Journal of Cancer, 1992, 65(1):40-4.
49. Lam KT; Calderwood SK. hsp70 binds specifically to a peptide derived from the highly conserved domain (I) region of p53. Biochem and Biophys Res Communications, 1992, 184:167-74.
51. Maestro R; Dolcetti R; Gasparotto D; Doglioni C; Pelucchi S; Barzan L; Grandi E; Boiocchi M. High frequency of p53 gene alterations associated with protein overexpression in human squamous cell carcinoma of the larynx. Oncogene, 1992, 7:1159-66.
56. Picksley SM; Meek DW; Lane DP. The conformational change of a murine temperature-sensitive p53 protein is independent of a change in phosphorylation status. Oncogene, 1992, 7:1649-51.
58. Remvikos Y; Tominaga O; Hammel P; Laurent-Puig P; Salmon RJ; Dutrillaux B; Thomas G. Increased p53 protein content of colorectal tumours correlates with poor survival. Brit J Cancer, 1992, 66:758-64.
59. Rivas CI; Wisniewski D; Strife A; Perez A; Lambe C; Bruno S; Darzynkiewicz Z; Clarkson B. Constitutive expression of p53 protein in enriched normal human marrow blast cell populations [see comments]. Blood, 1992, 79(8):1982-6.
63. Sturzbecher HW; Brain R; Addison C; Rudge K; Remm M; Grimaldi M; Keenan E; Jenkins JR. A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene, 1992, 7(8):1513-23.
p53 Ab-1 (Clone PAb 240)
Mouse Monoclonal Antibody
Cat. #MS-104-P0, -P1, or -P (0.1ml, 0.5ml, or 1.0ml at 200µg/ml) (Purified Ab with BSA and Azide)
Cat. #MS-104-P1ABX or -PABX (0.1ml or 0.2ml at 1.0mg/ml) (Purified Ab without BSA and Azide)
Cat. #MS-104-R7 (7.0ml) (Ready-to-Use for Immunohistochemical Staining)
Cat. #MS-104-PCS (5 Slides) (Positive Control for Histology)
Cat. #MS-104-PCL (0.1ml) (Positive Control for Western Blot)

70. Wiman KG; Magnusson KP; Ramqvist T; Klein G. Mutant p53 detected in a majority of Burkitt lymphoma cell lines by monoclonal antibody PAb240. Oncogene, 1991, 6(9):1633-9.